MINIMAL TRANSFORMATIONS WITH NO COMMON FACTOR NEED NOT BE DISJOINT

BY

SHMUEL GLASNER AND BENJAMIN WEISS

ABSTRACT

A countable family of minimal transformations (X, Z) is described for which no pair have a non-trivial common factor, and so that no pair is disjoint. This answers in the negative a question of H. Furstenberg.

§1. If (X_1, T) are minimal actions of a group T then (X_2, T) is a *factor* (X_1, T) if there is a T equivariant map π from X_1 onto X_2 . A pair of minimal actions (X_i, T) , $i = 1, 2$, are said to be *disjoint* if whenever they are both factors of a minimal action (X, T) via $\pi_i : X \to X_i$, $i = 1, 2$ the maps factor through some surjective map $\pi: X \to X_1 \times X_2$. An equivalent condition is that the product action $(X_1 \times X_2, T)$ is minimal. It is easy to see that if (X_1, T) and (X_2, T) have a non-trivial common factor then they cannot be disjoint. In [3], H. Furstenberg introduced the concept of disjointness for $T = Z$ and asked if the converse holds, i.e. does disjointness follow from the non-existence of a common factor. Already in [8], A. Knapp pointed out that the converse is false for quite simple non-commutative groups T . For abelian groups T several results in the positive direction were obtained, cf. [2]. For the analogous question concerning ergodic measure preserving transformations D. Rudolph and J. P. Thouvenot constructed in [13] an example showing that the converse is false, that is to say, not having a common factor need not imply disjointness.

In this paper we point out the existence of a countable family of minimal real flows $(X_{i}, \{h_{i}\}_{{i \in R}})$ for which no pair have a common factor and so that no pair is disjoint. Moreover, the family of "time one" transformations of these flows $(X_i, h₁)$ (which are also minimal) has the same properties, namely no pair have a common factor and no pair is disjoint.

Our flows are the classical horocycle flows on different compact surfaces of constant negative curvature; we make essential use of the recent deep studies of

Received August 23, 1982

M. Ratner concerning the structure of these flows, [9, 10]. We owe a great debt to D. Kazhdan for having shown us how to construct a family of uniform subgroups of $SL(2, \mathbb{R})$ that has the properties that we needed. For the remainder of the paper G will denote $SL(2, \mathbb{R})$ and h_i , the horocycle subgroup acting on G/Γ where Γ is a uniform (i.e. discrete and co-compact) subgroup of G . We will need three results concerning the horocycle flows:

THEOREM A (H. Furstenberg [4]). *The horocycle flow h, on a compact surface G/F is uniquely ergodic, i.e. it has a unique invariant measure.*

THEOREM B (M. Ratner [9]). If for two horocycle flows, $(G/\Gamma_1, h_1)$ and $(G/\Gamma_2, h_i)$, *the measure preserving transformations* $(G/\Gamma_1, h_1)$ *and* $(G/\Gamma_2, h_1)$ *are isomorphic, then* Γ_1 *and* Γ_2 *are conjugate subgroups of G.*

THEOREM C (M. Ratner {10]). *ff the measure preseroing transformation* (X, *S) is a measure theoretic [actor of a horocycle "time one" transformation* $(G/\Gamma, h_1)$ then (X, S) is measure theoretically isomorphic to a horocycle transfor*mation* $(G/\Gamma_1, h_1)$ with $\Gamma_1 \supset \Gamma$.

The minimality of the horocycle flow is a well known classical result. We remark that since all the h_i are conjugate to either h_i or h_{-i} (by the geodesic flow), it follows from Theorem A that for each t and in particular for $t = 1$, $(G/\Gamma, h)$ is uniquely ergodic and minimal.

Our family (X_i, \mathbf{R}) will be $(G/\Gamma_i, h_i)$ where $\{\Gamma_i\}$ is a sequence of uniform subgroups satisfying certain conditions. The next theorem asserts the existence of the required family.

THEOREM 1. *There exists a countable family of uniform subgroups* $\{\Gamma_i\}$ *of G that satisfy :*

- (i) for each i, j, Γ , $\cap \Gamma$, is of finite index in both Γ , and Γ ,;
- (ii) *for all i* \neq *j* and $g \in G$, Γ *, and* $g \Gamma_j g^{-1}$ generate a non-discrete subgroup of G.

The construction of such a family will be carried out in $\S2$. We proceed to show that the $(G/\Gamma, h)$ have the properties announced above. We will discuss the family $(G/\Gamma_1, h_1)$; the argument for the family of real flows $(G/\Gamma_1, h_1)$ is analogous. To begin with, by (i), both $(G/\Gamma_1, h_1)$ and $(G/\Gamma_1, h_1)$ are factors of the horocycle flow $(G/\Gamma, \cap \Gamma, h_1)$ with finite fibers so that they certainly are not disjoint. Suppose now that (X, S) is a common factor. By Theorem A, (X, S) is a factor of a uniquely ergodic system and hence is uniquely ergodic, say with invariant measure μ . The uniqueness implies that (X, S, μ) is a measure theoretic factor of both $(G/\Gamma_1, h_1)$ and $(G/\Gamma_1, h_1)$. Thus by Theorem C, (X, S, μ) is isomorphic to both $(G/\hat{\Gamma}_i, h_i)$ and $(G/\hat{\Gamma}_i, h_i)$ with $\hat{\Gamma}_i$, $\hat{\Gamma}_j$ uniform subgroups satisfying $\hat{\Gamma}_i \supset \Gamma_i$ and $\hat{\Gamma}_i \supset \Gamma_i$. Now Theorem B implies that there is some $g \in G$ with $g\hat{\Gamma}_i g^{-1} = \hat{\Gamma}_i$ and thus both Γ_i and $g\Gamma_i g^{-1}$ lie in the same uniform subgroup $\hat{\Gamma}_i$ which for $i \neq j$ contradicts property (ii). We have established the following result:

THEOREM 2. If the uniform subgroups Γ_i satisfy the conclusion of Theorem 1(i) and (ii), then the minimal transformations $(G/\Gamma_i, h_1)$ are pairwise non*disjoint and pairwise have no common factor.*

§2. To construct the Γ , 's begin with a quaternion subgroup Γ . To be definite set

$$
\Gamma = \left\{ \begin{pmatrix} a+b\sqrt{2} & c+d\sqrt{2} \\ 3(c-d\sqrt{2}) & a-b\sqrt{2} \end{pmatrix} : a, b, c, d \in \mathbb{Z}, a^2 - 2b^2 - 3c^2 + 6d^2 = 1 \right\}.
$$

The group $\Gamma \subset G$ and is co-compact ([5]). We let

$$
D_{\mathbf{Q}} = \left\{ \begin{pmatrix} a+b\sqrt{2} & c+d\sqrt{2} \\ 3(c-d\sqrt{2}) & a-b\sqrt{2} \end{pmatrix} : a, b, c, d \in \mathbf{Q} \right\}
$$

and recall that *Do* is a division algebra. At this point we need a lemma which can be proved using the rudiments of the Hasse-Minkowski theory, as described in [1, ch. 1], for example. Since the result is fairly routine we give only an outline of the proof.

LEMMA. *For any prime p, p* \equiv 1 (mod 24) *the quadratic form*

$$
px^2 + 2y^2 + 3z^2 - 6w^2 = 0
$$

has a non-trivial solution in integers x, y, z, w.

PROOF. According to the Hasse-Minkowski theorem we need only check that the form represents zero over the reals and over the q -adic numbers for all prime q. For the real field this is clear, and for any $q \neq 2, 3$ the form has at least three coefficients which are q -adic units so that once again the general theory gives that it represents zero over the q-adics for $q \neq 2, 3$. For $q = 2, 3$ one checks directly that zero is represented; here one uses the condition $p \equiv 1 \pmod{24}$.

By the lemma we have rational numbers r, s, t such that $2r^2 + 3s^2 - 6t^2 = -p$ and thus setting

$$
\gamma_p = \begin{pmatrix} r\sqrt{2} & s + t\sqrt{2} \\ 3(s - t\sqrt{2}) & -r\sqrt{2} \end{pmatrix}
$$

we have $\gamma_p \in D_Q$, and $\gamma_p^2 = -pI$, where I is the identity matrix. Denoting as usual the conjugation with γ_p of Γ by Γ^{γ_p} we set $\Gamma(p) = \Gamma \cap \Gamma^{\gamma_p}$ and $\Gamma_p =$ $\{\Gamma(p), \gamma_p/\sqrt{p}\}\$ the group generated by $\Gamma(p)$ and γ_p/\sqrt{p} . Clearly $\Gamma_p \subset G$.

One can write γ_p in the form $(1/a)A$ where $a \in \mathbb{Z}$ and A has integral entries. Let $\Lambda \subset \Gamma$ consist of the matrices congruent to I (mod pa^2), then Λ is a subgroup of finite index in Γ . On the other hand, $\Lambda^{\gamma_p} \subset \Gamma$ and hence $\Lambda^{\gamma_p} \subset \Gamma \cap \Gamma^{\gamma_p}$. Conjugating with γ_p and recalling that γ_p^2 is a scalar, we obtain $\Lambda \subset \Gamma \cap \Gamma^{r_p}$. It follows that $\Gamma(p) = \Gamma \cap \Gamma^{\gamma_p}$ has finite index in Γ . Since $\Gamma(p)$ is of index 2 in Γ_p it follows that Γ_p is uniform and the family $\{\Gamma_i\}$ of Theorem 1 is simply $\{\Gamma_p\}_{p\in P}$ where

$$
P = \{\text{primes } p : p \equiv 1 \pmod{24}\}.
$$

Conclusion (i) of Theorem 1 for $p, q \in P$ follows upon consideration of the subgroup of matrices of Γ congruent to I (mod m) for a suitable m as above. The remainder of the section is devoted to proving (ii).

Fix two distinct elements p, q in P and $g \in G$ and let $\Delta = {\{\Gamma_p, \Gamma_q^g\}}$, the subgroup generated by Γ_p and Γ_q^s . We suppose that Δ is discrete and aim at deducing a contradiction. Since Γ_p and Γ_q^s are uniform, each is of finite index in Δ and thus so is their intersection. Let $\Lambda_0 = \Gamma(p) \cap \Gamma(q)$ and verify that $\Lambda_1 =$ $A_0 \cap A_0^g$ is of finite index in Γ . Since $A_1^{g-1} \subset \Gamma$, by considering the algebra generated by Λ_1 over Q we conclude that $D\delta = D_0$. In particular $\gamma^s = \delta$ is an element of D_0 and by construction its determinant is q. All that we shall need for the continuation is the existence of a $\delta \in D_0$ with determinant = q, such that δ/\sqrt{q} together with Γ_p generates a group which is a finite extension of $\Gamma(p)$.

At this point we introduce the q-adic completion of Q, Q_q and let D_{Q_q} = $D_{\mathbf{Q}} \otimes \mathbf{Q}_q$. The latter is isomorphic to $M(2,\mathbf{Q}_q)$ since $\sqrt{2} \in \mathbf{Q}_q$ by quadratic reciprocity. There is a natural mapping of $GL(2, \mathbf{Q}_q)$, which is the multiplicative group of $D_{Q_{\alpha}}$, into PGL(2, Q_q), and thus also a map of Γ into PGL(2, Q_q); both are denoted by θ_a .

LEMMA. *The closure of* $(\theta_p \times \theta_q)(\Gamma)$ *in* PGL(2, \mathbf{Q}_p) × PGL(2, \mathbf{Q}_q) *is all of* $PSL(2, \mathbb{Z}_p) \times PSL(2, \mathbb{Z}_q)$.

PROOF. The proof follows immediately from the strong approximation theorem of M. Kneser ([16, page 81]), and the fact that $PSL(2, \mathbb{Z}_p)$ is open in $PSL(2, \mathbf{Q}_p).$

COROLLARY. *The closure of* $\theta_q(\Gamma(p))$ *is all of* $PSL(2, \mathbb{Z}_q)$.

PROOF. Since $\Gamma(p)$ is of finite index in Γ , $\overline{\theta_p}(\Gamma(p)) \times \text{PSL}(2, \mathbb{Z}_q)$ is open and thus by the lemma $(\theta_p \times \theta_q)(\Gamma)$ is dense there. However,

$$
\theta_p^{-1}(\overline{\theta_p(\Gamma(p))}\cap\theta_p(\Gamma))\subset\Gamma(p)
$$

and thus $\theta_q(\Gamma(p))$ is dense in PSL(2, \mathbb{Z}_q).

Recall that δ/\sqrt{q} together with $\Gamma(p)$ generates a finite extension of $\Gamma(p)$. Modulo scalars, the same is true for δ , and thus since the map θ_q incorporates the canonical projection of $GL(2, \mathbf{Q}_p) \rightarrow PGL(2, \mathbf{Q}_p)$ we have that the group ${\theta_a(\Gamma(p))}, \theta_a(\delta)$ generated by $\theta_a(\Gamma(p))$ and $\theta_a(\delta)$ is a finite extension of $\theta_{q}(\Gamma(p))$. It follows that the group

$$
K=\overline{\{\theta_{q}\left(\Gamma(p),\,\theta_{q}\left(\delta\right)\right\}}
$$

is a finite extension of $PSL(2, \mathbb{Z}_q)$ and thus a compact subgroup of $PGL(2, \mathbb{Q}_q)$ that contains both PSL(2, \mathbb{Z}_q) and θ_q (δ).

Let X be the tree of equivalence classes of lattices in the 2-dimensional vector space $V = \mathbf{Q}_q^2$ over \mathbf{Q}_q (L and L' being equivalent if $L' = tL$ for some $t \in \mathbf{Q}_q^*$). PGL(2, Q_q) acts on X and by prop. 2, chapter II of [14], K being a finite extension of PSL(2, \mathbb{Z}_q), fixes a vertex Λ_0 of X. By the corollary of proposition 1 of chapter II in [14] we have

$$
d(\Lambda, s\Lambda) \equiv v(\det(s)) \pmod{2}
$$

where d denotes the distance function on X, $\Lambda \in X$, $s \in GL(2, \mathbf{Q}_q)$ and v is the valuation on \mathbf{Q}_q . In this formula one can take s to be an element of PGL(2, \mathbf{Q}_q) where the determinant is taken for some representative of s in $GL(2, \mathbb{Q}_q)$. In particular, since det $\delta = q$ we get

$$
d(\Lambda, \theta_{q}(\delta)\Lambda) \equiv v(\det(\delta)) = v(q) \equiv 1 \pmod{2}.
$$

On the other hand, since $\theta_q(\theta) \subset K$ we have $\theta_q(\delta) \Lambda_0 = \Lambda_0$. This contradiction completes the proof of Theorem 1. \Box

w Remarks

(a) If one is interested in just a single pair of horocycle flows on compact surfaces that have no common factor but are not disjoint, a more geometric example is available for which we are indebted to H. Farkas and L. Greenberg. The two groups Γ_1, Γ_2 in question are the so-called triangle groups $\Gamma_1 = T(2, 3, 9)$, $\Gamma_2 = T(2, 3, 18)$. On the one hand, these groups are not isomorphic and are known to be maximal in the class of Fuchsian groups, and so by Theorems A-C they have no common factor. On the other hand, from the general inclusions $T(m, m, n) \subset T(2, m, 2n)$ with index 2, $T(3, 3, 9) \subset \Gamma_2$ with index 2, while

 $T(3, n, 3n) \subset T(2, 3, 3n)$ with index 4 implies that $T(3, 3, 9) \subset \Gamma_1$ with index 4, hence there is a common finite extension of the horocycle flows G/Γ_1 and G/Γ_2 , namely $G/\Gamma(3,3,9)$.

The assertions used above concerning the maximality of the triangle groups in question are contained in [7] and [15]. The inclusion can, of course, be easily checked directly.

(b) Using Theorems B and C alone, one sees that the examples that we constructed give a negative answer to the measure theoretic version of Furstenberg's question.

Our example differs from the one described in [13] in that the joining in our case is a finite extension of both transformations, whereas in their case the joining is a two point extension of one of the transformations but a continuous extension of the other.

(c) Let $\mathcal{X} = (X, \mathcal{B}, \mu, T)$ be an ergodic measure preserving system where X is compact metric and T a homeomorphism of X. Let $\mathcal{P}(X)$ be the space of probability measures on X with the weak $*$ topology and $\mathscr G$ the corresponding Borel field. We use the same letter T to denote the homeomorphism induced by T on $\mathcal{P}(X)$. If λ is a probability measure on $\mathcal{P}(X)$ we say that $\mathcal{Y} =$ $({\mathscr P}(X), {\mathscr G}, \lambda, T)$ is a *quasi-factor* (q.f.) of ${\mathscr X}$ if λ is T invariant and for each $f \in C(X)$

$$
\int_X f(x) d\mu = \iint_{\mathscr{P}(X)X} f(x) d\nu(x) d\lambda(\nu).
$$

It can be shown that as a measure theoretical object a q.f. is an invariant of the original measure theoretical process. For more details the reader is referred to $[6]$.

Given Γ_p , Γ_q (p, $q \in P$) as in §2 we have a natural homeomorphism of $G/\Gamma_p \cap \Gamma_q$ onto a subspace of $(G/\Gamma_p) \times (G/\Gamma_q)$, namely $g(\Gamma_p \cap \Gamma_q) \rightarrow$ $(g\Gamma_p, g\Gamma_q)$. Let μ , λ and θ denote the invariant measures on $X = G/\Gamma_p$, $y = G/\Gamma_a$ and $G/\Gamma_p \cap \Gamma_a$, respectively.

Disintegrating θ over λ we have

$$
\theta = \int_{G/\Gamma_q} \nu_y \times \delta_y d\lambda (y).
$$

The map $y \to \nu_y$ of Y into $\mathcal{P}(X)$ sends λ onto a measure $\tilde{\lambda}$ on $\mathcal{P}(X)$ which defines a q.f. of (X, μ, h_1) . Thus for any $q \in P$ there is a q.f. of $(G/\Gamma_p, \mu, h_1)$ which is a factor of $(G/\Gamma_a, \lambda_a, h_1)$. This yields a countable family of nonisomorphic q.f. of (X, μ, h_1) .

There exists an *n* such that the q.f. $(\mathcal{P}(X), G, \tilde{\lambda}, h_1)$ is isomorphic to an ergodic process on X^h , the *n*th symmetric product of X.

Let $\tilde{\lambda}$ be the unique permutation invariant lift of $\tilde{\lambda}$ to X'' and let λ_0 be an ergodic component of $\tilde{\lambda}$. It is easy to check that the projection of λ_0 on each X component is μ . If we consider any projection of λ_0 onto an $X \times X$ component we see that this projection can be neither $\mu \times \mu$ nor $\int \delta_x \times \delta_{h,x} d\mu(x)$, for some $t \in \mathbb{R}$. The former is impossible since λ_0 is a finite extension of each of its X-projections, and the latter will imply that the support of each ν , contains a pair *x*, $h_i x$ which, again, one can check is impossible. Thus $(G/\Gamma_p, \mu, h_i)$ does not have minimal self-joinings in the sense of [13]. For a complete description of the self-joinings of $(G/\Gamma, \mu, h_1)$ see [11], [12].

(d) The methods of [10] can be used to show that every topological factor of a horocycle flow is topologically a horocycle flow. In particular, if F is maximal and co-compact $(G/\Gamma, h)$ is a real minimal prime flow and $(G/\Gamma, h)$ is a prime minimal transformation. Here is a brief sketch of the proof. We suppose that Γ is co-compact and that $\pi: G/\Gamma \rightarrow X$ is continuous where X is compact metric and $\pi h_1 = T\pi$ for a continuous transformation $T: X \rightarrow X$. An analogous argument can be carried out for the case of the real flow h_i .

(i) A simpler version of the arguments in §§2, 3 of [10] will establish, in this setting (G/Γ) compact and π continuous), that there exists a positive constant $c > 0$, such that $x_1 \neq x_2$, $\pi(x_1) = \pi(x_2)$ implies $d(x_1, x_2) \geq c$. This shows that h_1 is a finite isometric extension of T.

(ii) The unique ergodicity of h_1 shows that the disintegration of the Haar measure on G/Γ with respect to the fibering defined by π is uniformly distributed on the points of the fiber. Thus in case Γ was maximal we are done, since a non-trivial topological factor would give rise to a non-trivial measure theoretic factor which is ruled out by Theorem C.

(iii) An examination of the proof of the main theorem in [10] shows that there is a finite extension of Γ , $\tilde{\Gamma} \supset \Gamma$, such that the canonical projection $\tilde{\pi}: G/\Gamma \rightarrow G/\tilde{\Gamma}$ defines a fibering of G/Γ which agrees with the fibering defined by π on a set of full measure. Since the extension is isometric, even a single common fiber would suffice to establish a topological isomorphism between $(G/\tilde{\Gamma}, h_1)$ and (X, T) .

REFERENCES

^{1.} Z. I. Borevich and I. R. Shafarevich, *Number Theory,* Academic Press, 1966.

^{2.} R. Ellis, S. Glasner and L. Shapiro, *Algebraic equivalents of flow disjointness,* Ill. J. Math. 20 (1976), 354-360.

3. H. Furstenberg, *Disjointness in ergodic theory, minimal sets, and a problem in diophantine approximation, Math. Syst. Theory 1 (1967), 1–49.*

4. H. Furstenberg, The *unique ergodicity of the horocycle flow,* in *Recent Advances in Topological Dynamics,* Springer-Verlag Lecture Notes in Math. 318, 1973, pp. 95-115.

5. I. M. Gel[and, M. I. Graev and I. I. Piatetskii-Shapiro, *Representatton Theory and Automorphic Functions,* W. B. Saunders, 1969.

6. S. Glasner, *Ouasifactors in ergodic theory, to* appear.

7. L. Greenberg, *Maximal Fuchsian groups,* Bull. Am. Math. Soc. 4 (1963), 569--573.

8. A. W. Knapp, *Functions behaving like almost automorphic [unctions,* in *Topological Dynamics, an International Symposium,* W. A. Benjamin Co., New York, 1968, pp. 299-317.

9. M. Ratner, *Rigidity of horocycle flows,* Ann. of Math., to appear.

10. M. Ratner, *Factors of the horocycle flow, ergodic theory and dynamical systems,* to appear.

11. M. Ratner, *Joinings of horocycle flow,* to appear.

12. M. Ratner, *Rigidity of products of horocycle flows,* to appear.

13. D. Rudolph, *An example of a measure-preserving map with minimal self-joinings, and applications,* J. Analyse Math. 35 (1979), 97-122.

14. J. P. Serre, *Arbres, amalgames*, SL₂, Asterisque 46 (1977).

15. D. Singerman, *Finitely maximal Fuchsian groups,* J. London Math. Soc. 6 (1972), 29-38.

16. M. F. Vigneras, *Arithmetique des Algebres de Quaternions,* Springer-Verlag Lecture Notes in Math. 800, 1980.

SCHOOL OF MATHEMATICS

TEL AVIV UNIVERSITY

TEL AvIv, ISRAEL

INSTITUTE OF MATHEMATICS THE HEBREW UNIVERSITY OF JERUSALEM JERUSALEM, ISRAEL