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MINIMAL TRANSFORMATIONS WITH NO 
COMMON FACTOR NEED NOT BE DISJOINT 

BY 

SHMUEL GLASNER AND BENJAMIN WEISS 

A B S T R A C T  

A countable family of minimal transformations (X, Z) is described for which no 
pair have a non-trivial common factor, and so that no pair is disjoint. This 
answers in the negative a question of H. Furstenberg. 

w If (X,, T) are minimal actions of a group T then (X2, T) is a factor 
(X1, T) if there is a T equivariant map ~r from X1 onto X2. A pair of minimal 

actions (X,, T), i = 1,2, are said to be disjoint if whenever they are both factors 

of a minimal action (X, T) via ~-, : X ~ X,, i = 1, 2 the maps factor through some 

surjective map 7r:X---~X~ • X2. An equivalent condition is that the product 

action (X1 • X2, T) is minimal. It is easy to see that if (XI, T) and (X2, T) have a 

non-trivial common factor then they cannot be disjoint. In [3], H. Furstenberg 

ifltroduced the concept of disjointness for T = Z and asked if the converse holds, 

i.e. does disjointness follow from the non-existence of a common factor. Already 

in [8], A. Knapp pointed out that the converse is false for quite simple 

non-commutative groups T. For abelian groups T several results in the positive 

direction were obtained, cf. [2]. For the analogous question concerning ergodic 

measure preserving transformations D. Rudolph and J. P. Thouvenot  con- 

structed in [13] an example showing that the converse is false, that is to say, not 

having a common factor need not imply disjointness. 

In this paper we point out the existence of a countable family of minimal real 

flows (X,, {h,},ER) for which no pair have a common factor and so that no pair is 

disjoint. Moreover,  the family of "t ime one"  transformations of these flows 

(X,, hi) (which are also minimal) has the same properties, namely no pair have a 

common factor and no pair is disjoint. 

Our flows are the classical horocycle flows on different compact surfaces of 

constant negative curvature; we make essential use of the recent deep studies of 
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M. Ratner concerning the structure of these flows, [9, 10]. We owe a great debt 

to D. Kazhdan for having shown us how to construct a family of uniform 

subgroups of SL(2, R) that has the properties that we needed. For the remainder 

of the paper G will denote SL(2, R) and h, the horocycle subgroup acting on 

G/F where F is a uniform (i.e. discrete and co-compact) subgroup of G. We will 

need three results concerning the horocycle flows: 

THEOREM A (H. Furstenberg [4]). The horocycle flow h, on a compact surface 
G/F is uniquely ergodic, i.e. it has a unique invariant measure. 

THEOREM B (M. Ratner [9]). If for two horocycle flows, (G/FI, h,) and 
( G /F2, h,), the measure preserving transformations (G/F1, hl) and ( G /F~, hi) are 
isomorphic, then FI and Fz are conjugate subgroups of G. 

THEOREM C (M. Ratner {10]). f f  the measure preseroing transformation 
(X, S) is a measure theoretic [actor of a horocycle "time one" transformation 
(G/F, hl) then (X, S) is measure theoretically isomorphic to a horocycle transfor- 
mation (G/F~, ht) with F~ ~ F. 

The minimality of the horocycle flow is a well known classical result. We 
remark that since all the h, are conjugate to either h~ or h-L (by the geodesic 

flow), it follows from Theorem A that for each t and in particular for t = 1, 

(G/F, h,) is uniquely ergodic and minimal. 
Our family (X,,R) will be (G/F,,h,) where {F,} is a sequence of uniform 

subgroups satisfying certain conditions. The next theorem asserts the existence 

of the required family. 

THEOREM 1. There exists a countable family of uniform subgroups {F,} of G 
that satisfy : 

(i) ]'or each i, i, F, n Fj is of finite index in both F, and F~ ; 
(if) for all i ~ j and g E G, F, and gFjg -~ generate a non-discrete subgroup of G. 

The construction of such a family will be carried out in w We proceed to 

show that the (G/F,, h,) have the properties announced above. We will discuss 

the family (G/F ,  hl); the argument for the family of real flows (GIF,,h,) is 

analogous. To begin with, by (i), both (G/F,, hi) and (G/F ,  hi) are factors of the 

horocycle flow (G/F, n Fs, ht) with finite fibers so that they certainly are not 

disjoint. Suppose now that (X, S) is a common factor. By Theorem A, (X, S) is a 

factor of a uniquely ergodic system and hence is uniquely ergodic, say with 
invariant measure/z. The uniqueness implies that (X, S,/z) is a measure theoretic 

factor of both (G/F,,h~) and (G/FI, h O. Thus by Theorem C, (X,S,/x) is 



Vol. 45. 1 9 8 3  MINIMAL TRANSFORMATIONS AND DISJOINTNESS 3 

isomorphic to both (G/f ' , ,  h~) and (Gfi',, h,) with [',, ['j uniform subgroups 

satisfying 1 ~, D F, and F, D I"/. Now Theorem B implies that there is some g E G 

with g~Ig-t = [, and thus both F, and gFjg -~ lie in the same uniform subgroup 1 a, 

which for i / j  contradicts property (ii). We have established the following 

result: 

THEOREM 2. If the uniform subgroups F, satisfy the conclusion of Theorem 
l(i) and (ii), then the minimal transformations (G/F,, hi) are pairwise non- 
disjoint and pairwise have no common factor. 

w To construct the F, 's begin with a quaternion subgroup F. To be definite 

set 

~ (a + b X/2 _ c + d V ~ ]  a2 - } 
F = [ \3 (c  _ dX/2 ) a _ b V ~ ]  : a ' b ' c ' d ~ z '  2 b 2 - 3 c 2 + 6 d 2 = l  . 

The group F C G and is co-compact ([5]). We let 

Do= 3(c - d V 2 )  a - b X / 2 ]  : a ,b ,c ,d  E Q  

and recall that Do is a division algebra. At this point we need a lemma which can 

be proved using the rudiments of the Hasse-Minkowski theory, as described in 

[1, ch. 1], for example. Since the result is fairly routine we give only an outline of 

the proof. 

LEMMa. For any prime p, p -- 1 (mod 24) the quadratic form 

px2 + 2y2 + 3 z 2 - 6 w 2 = O  

has a non-trivial solution in integers x, y, z, w. 

PROOV. According to the Hasse-Minkowski theorem we need only check 

that the form represents zero over the reals and over the q-adic numbers for all 

prime q. For the real field this is c/ear, and for any q / 2, 3 the form has at least 

three coefficients which are q-adic units so that once again the general theory 

gives that it represents zero over the q-adics for q ~ 2, 3. For q = 2, 3 one checks 

directly that zero is represented; here one uses the condition p - 1 (mod 24). [] 

By the lemma we have rational numbers r, s, t such that 2r2+ 3s 2 -  6t 2 = - p  

and thus setting 

{rV  
~'P = \ 3 ( s  - t v 2 )  

s+ tX /2]  
- rV~  ! 
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we have yp E Do, and -y~ = - p I ,  where I is the identity matrix. Denoting as 

usual the conjugation with yp of F by F~, we set F (p )=  FN F*, and Fp = 

{F(p), yp/~/p} the group generated by F(p) and 7p/N/p. Clearly Fp C G. 

One can write 7p in the form (1/a)A where a E Z and A has integral entries. 
Let A C F consist of the matrices congruent to I (mod pa 2), then A is a subgroup 

of finite index in F. On the other hand, A*, C F and hence A~, C FfqF~,. 

Conjugating with yp and recalling that yp is a scalar, we obtain A C F f-) F~,. It 

follows that F(p) = F f3 F~P has finite index in F. Since F(p) is of index 2 in Fp it 

follows that Fp is uniform and the family {F,} of Theorem 1 is simply {Fp}pEe 
where 

P = {primes p :p -= 1 (mod 24)}. 

Conclusion (i) of Theorem 1 for p,q ~ P follows upon consideration of the 

subgroup of matrices of F congruent to I (mod rn) for a suitable m as above. 

The remainder of the section is devoted to proving (ii). 

Fix two distinct elements p, q in P and g E G and let A = {Fp, F~}, the 

subgroup generated by Fp and F~. We suppose that A is discrete and aim at 

deducing a contradiction. Since Fp and F~ are uniform, each is of finite index in A 

and thus so is their intersection. Let A0 = F(p)A F(q) and verify that A1 = 

A0fq A0 s is of finite index in F. Since A~-~C F, by considering the algebra 

generated by A1 over Q we conclude that D~ = Do. In particular ~/~ = 8 is an 

element of Do and by construction its determinant is q. All that we shall need for 
the continuation is the existence of a 8 E Do with determinant = q, such that 
8/%/q together with Fp generates a group which is a finite extension of F(p). 

At  this point we introduce the q-adic completion of Q, Qq and let Doq = 

Do@Qq.  The latter is isomorphic to M(2,Qq) since N/2EQq by quadratic 

reciprocity. There is a natural mapping of GL(2, Qq), which is the multiplicative 

group of DQ~, into PGL(2,Qq), and thus also a map of F into PGL(2,Qq); both 

are denoted by 0q. 

LEMMA. The closure of (0p x 0q)(F) in PGL(2,Qp)•  is all of 
PSL(2, Zp) • PSL(2, Zq). 

PROOF. The proof follows immediately from the strong approximation 

theorem of M. Kneser ([16, page 81]), and the fact that PSL(2,Zp) is open in 

PS L(2, Qp). [] 

COROLLARY. The closure o[ 0q(F(p)) is all of PSL(2,Zq). 

PROOF. Since F(p) is of finite index in F, 0p (F(p))x PSL(2, Zq) is open and 

thus by the lemma (0p x 0q)(F) is dense there. However, 
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o.'(o. (r(p)) no.  (r)) c r(p) 

and thus 0q (F(p)) is dense in PSL(2, Zq). [] 

Recall that 8/~v/q together with F(p) generates a finite extension of F(p). 

Modulo scalars, the same is true for 6, and thus since the map Oq incorporates the 

canonical projection of GL(2,Qp)---~PGL(2,Qe ) we have that the group 

{0q(F(p)),0,(~)} generated by 0q(F(p)) and Oq(6) is a finite extension of 
0q (F(p)). It follows that the group 

K = {0~ (F(p), 0q (3)} 

is a finite extension of PSL(2, Zq) and thus a compact subgroup of PGL(2, Qq) 

that contains both PSL(2,Zq) and 04 (6). 

Let X be the tree of equivalence classes of lattices in the 2-dimensional vector 

space V = Q~ over Qq (L and L '  being equivalent if L '  = tL for some t E Q*). 

PGL(2,Qq) acts on X and by prop. 2, chapter II of [14], K being a finite 

extension of PSL(2, Zq), fixes a vertex A~j of X. By the corollary of proposition 1 

of chapter II in [14] we have 

d(A, s A) ~ v(det(s)) (mod 2) 

where d denotes the distance function on X, A E X, s E GL(2,Qq)and v is the 

valuation on Qq. In this formula one can take s to be an element of PGL(2, Qq) 

where the determinant is taken for some representative of s in GL(2,Qq). In 

particular, since det 8 = q  we get 

d(A, 0q (~)A) -- v(det(6)) = v(q) -= 1 (mod 2). 

On the other hand, since 0q (0)C K we have 0q (8)Ao = Ao. This contradiction 

completes the proof of Theorem 1. [] 

w Remarks 

(a) If one is interested in just a single pair of horocycle flows on compact 

surfaces that have no common factor but are not disjoint, a more geometric 

example is available for which we are indebted to H. Farkas and L. Greenberg. 

The two groups F1, 1"2 in question are the so-called triangle groups F1 = T(2, 3, 9), 

F2 = T(2, 3, 18). On the one hand, these groups are not isomorphic and are 

known to be maximal in the class of Fuchsian groups, and so by Theorems A - C  

they have no common factor. On the other hand, from the general inclusions 

T(m,m,n)CT(2 ,  m,2n) with index 2, T(3,3,9)CF2 with index 2, while 
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T(3, n , 3 n ) C  T(2 ,3 ,3n)  with index 4 implies that T(3 ,3 ,9 )C F~ with index 4, 

hence there is a common finite extension of the horocycle flows G/F1 and G/F2, 
namely G/F(3, 3, 9). 

The assertions used above concerning the maximality of the triangle groups in 

question are contained in [7] and [15]. The inclusion can, of course, be easily 

checked directly. 

(b) Using Theorems B and C alone, one sees that the examples that we 

constructed give a negative answer to the measure theoretic version of Fursten- 

berg's question. 

Our example differs from the one described in [13] in that the joining in our 

case is a finite extension of both transformations, whereas in their case the 

joining is a two point extension of one of the transformations but a continuous 

extension of the other. 

(c) Let ~ = (X, ~, /z ,  T) be an ergodic measure preserving system where X is 

compact metric and T a homeomorphism of X. Let ~ ( X )  be the space of 

probability measures on X with the weak * topology and qd the corresponding 

Borel field. We use the same letter T to denote the homeomorphism induced by 

T on ~ ( X ) .  If 3, is a probability measure on ~ ( X )  we say that ~ = 

(~ (X) ,  ~3, A, T) is a quasi-factor (q.f.) of ~f if A is T invariant and for each 

f c(x) 

f,, f(x),J.= f f(x)du(x)dA(v). 
It can be shown that as a measure theoretical object a q.f. is an invariant of the 

original measure theoretical process. For more details the reader is referred to 

[6]. 
Given Fp, Fq (p,q ~P)  as in w we have a natural homeomorphism of 

G/FpAFq onto a subspace of (G/Fp)x(G/Fq), namely g(FpNFq)--~ 

(gFp,gFq). Let /x, A and 0 denote the invariant measures on X =  G/F,, 
y = G/Fq and G/Fp 71Fq, respectively. 

Disintegrating 0 over A we have 

0 = ( v, x 8ydA (y). 
J o  /Fq 

The map y ~ vy of Y into ~ ( X )  sends A onto a measure ~( on ~ ( X )  which 

defines a q.f. of (X,/z, h0. Thus for any q E P there is a q.f. of (G/Fp, It, hi) 
which is a factor of (G/Fq,Aq,h O. This yields a countable family of non- 

isomorphic q.f. of (X,/x, h 0. 
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There exists an n such that the q.f. (~ (X) ,  G, ,(, h,) is isomorphic to an ergodic 

process on X ~, the nth symmetric product of X. 

Let ,~ be the unique permutation invariant lift of ,~ to X" and let Ao be an 

ergodic component  of ,~. It is easy to check that the projection of Ao on each X 

component is IX. If we consider any projection of Ao onto an X x X component  

we see that this projection can be neither IX x IX nor f ~  • 6h,xdix (x ), for some 

t E R .  The former is impossible since Ao is a finite extension of each of its 

X-projections, and the latter will imply that the support of each u, contains a 

pair x, h,x which, again, one can check is impossible. Thus (GIFt,  tx, h~) does not 

have minimal self-joinings in the sense of [13]. For a complete description of the 

self-joinings of (G/F, ix, h,) see [11], [12]. 

(d) The methods of [10] can be used to show that every topological factor of a 

horocycle flow is topologically a horocycle flow. In particular, if F is maximal and 

co-compact (G/F,h,)  is a real minimal prime flow and (G/F, hi) is a prime 

minimal transformation. Here is a brief sketch of the proof. We suppose that F is 

co-compact and that ~r : G/F---~ X is continuous where X is compact metric and 

7rh, = T~- for a continuous transformation T:X---~ X. An analogous argument 

can be carried out for the case of the real flow h,. 

(i) A simpler version of the arguments in w167 3 of [10] will establish, in this 

setting (G/F compact and cr continuous), that there exists a positive constant 

c > 0, such that x~ / x2, ~r(x,) = It(x2) implies d(x~, x2) >-_ c. This shows that h~ is 

a finite isometric extension of T. 

(ii) The unique ergodicity of h~ shows that the disintegration of the Haar  

measure on G/F with respect to the fibering defined by ~r is uniformly 

distributed on the points of the fiber. Thus in case F was maximal we are done, 

since a non-trivial topological factor would give rise to a non-trivial measure 

theoretic factor which is ruled out by Theorem C. 

(iii) An examination of the proof of the main theorem in [10] shows that there 

is a finite extension of F, [" D F, such that the canonical projection 

: G/F---, G/f" defines a fibering of G/F which agrees with the fibering defined 

by ~r on a set of full measure. Since the extension is isometric, even a single 

common fiber would suffice to establish a topological isomorphism between 

(G/I' ,  hi) and (X, r ) .  
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